Domain transfer multi-instance dictionary learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Multi-Instance Transfer Learning

We present a new approach for transferring knowledge from groups to individuals that comprise them. We evaluate our method in text, by inferring the ratings of individual sentences using full-review ratings. This approach combines ideas from transfer learning, deep learning and multi-instance learning, and reduces the need for laborious human labelling of fine-grained data when abundant labels ...

متن کامل

Learning Instance Weights in Multi-Instance Learning

Multi-instance (MI) learning is a variant of supervised machine learning, where each learning example contains a bag of instances instead of just a single feature vector. MI learning has applications in areas such as drug activity prediction, fruit disease management and image classification. This thesis investigates the case where each instance has a weight value determining the level of influ...

متن کامل

Max-Margin Multiple-Instance Dictionary Learning

Dictionary learning has became an increasingly important task in machine learning, as it is fundamental to the representation problem. A number of emerging techniques specifically include a codebook learning step, in which a critical knowledge abstraction process is carried out. Existing approaches in dictionary (codebook) learning are either generative (unsupervised e.g. k-means) or discrimina...

متن کامل

Domain Adaptive Dictionary Learning

Many recent efforts have shown the effectiveness of dictionary learning methods in solving several computer vision problems. However, when designing dictionaries, training and testing domains may be different, due to different view points and illumination conditions. In this paper, we present a function learning framework for the task of transforming a dictionary learned from one visual domain ...

متن کامل

Multi-instance multi-label learning

In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples, we propose the Miml...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computing and Applications

سال: 2016

ISSN: 0941-0643,1433-3058

DOI: 10.1007/s00521-016-2406-5